Banyak hal yang tidak ku ketahui dan ku tulis disini

Minggu, 16 Desember 2012

Materi Tentang Proses Replikasi DNA



Secara sederhana:
Mula-mula, heliks ganda DNA (merah) dibuka menjadi dua untai tunggal oleh enzim helikase (9) dengan bantuan topoisomerase (11) yang mengurangi tegangan untai DNA. Untaian DNA tunggal dilekati oleh protein-protein pengikat untaian tunggal (10) untuk mencegahnya membentuk heliks ganda kembali. Primase (6) membentuk oligonukleotida RNA yang disebut primer (5) dan molekul DNA polimerase (3 & 8) melekat pada seuntai tunggal DNA dan bergerak sepanjang untai tersebut memperpanjang primer, membentuk untaian tunggal DNA baru yang disebut leading strand (2) dan lagging strand (1). DNA polimerase yang membentuk lagging strand harus mensintesis segmen-segmen polinukleotida diskontinu (disebut fragmen Okazaki (7)). Enzim DNA ligase (4) kemudianmenyambungkan potongan-potongan lagging strand tersebut.
Salah satu tahapan penting dalam proses pertumbuhan jasad hidup adalah proses perbanyakan bahan genetik. Proses perbanyakan bahan genetik dikenal sebagai proses replikasi. Pada replikasi DNA, rantai DNA baru dibentuk berdasarkan urutan nukleotida pada DNA yang digandakan. Replikasi merupakan proses pelipatgandaan DNA. Replikasi DNA adalah proses penggandaan molekul DNA untai ganda. Pada sel, replikasi DNA terjadi sebelum pembelahan sel. Prokariota terus-menerus melakukan replikasi DNA. Penggandaan tersebut memanfaatkan enzim DNA polimerase yang membantu pembentukan ikatan antara nukleotida-nukleotida penyusun polimer DNA. Proses replikasi DNA dapat pula dilakukan in vitro dalam proses yang disebut reaksi berantai polimerase (PCR).
Setiap molekul DNA yang melakukan replikasi sebagai suatu satuan tunggal dinamakan replikon. Replikasi molekol DNA dimulai dari tempat khusus yang disebut titik mula replikasi (origins of replication), bentangan pendek DNA yang memiliki sekuens nukletida spesifik. Kromosom E. coli, seperti banyak kromosom bakteri lain melingkar dan memiliki satu titik mula. Berkebalikan dengan kromosom bakteri, kromosom eukariot mungkin memiliki beberapa ratus atau beberapa ribu titik mula replikasi. (Campbell, 2008)
Proses inisiasi ini ditandai oleh saling memisahnya kedua untai DNA, yang masing-masing akan berperan sebagai cetakan bagi pembentukan untai DNA baru sehingga akan diperoleh suatu gambaran yang disebut sebagai garpu replikasi. Biasanya, inisiasi replikasi DNA, baik pada prokariot maupun eukariot, terjadi dua arah (bidireksional). Dalam hal ini dua garpu replikasi akan bergerak melebar dari ori menuju dua arah yang berlawanan hingga tercapai suatu ujung (terminus).
1.    Tahapan-tahapan dalam proses replikasi
§  Inisiasi, DNA dalam sel-sel eukaryotik memiliki ARCs (autonomously replicating sequence) yang berperan sebagai asal muasal replikasi dan mereka saling berlawanan dari asal bakterial (ORI). ARCs terdiri atas 11 pasangan landasan rentetan tambah dua atau tiga rentetan nucleotida pendek tambahan dengan 100 hingga 200 pasangan landasan sepanjang area DNA. Grup utama dari enam protein, secara kolektif  dikenal dikenal sebagai ORC (Origin Recognition Complex), mengikat asal muasal replikasi, menandai replikasi DNA dengan tepat pada saat waktu yang sesuai melalui siklus sel. Pengenalan situs awal replikasi, oleh suatu protein komponen polymerase DnaA yang dihasilkan oleh gen dnaA.
§  Terbentuknya Garpu Replikasi. Garpu replikasi atau cabang replikasi (replication fork) ialah struktur yang terbentuk ketika DNA bereplikasi. Garpu replikasi ini dibentuk akibat enzim helikase yang memutus ikatan-ikatan hidrogen yang menyatukan kedua untaian DNA, membuat terbukanya untaian ganda tersebut menjadi dua cabang yang masing-masing terdiri dari sebuah untaian tunggal DNA. Masing-masing cabang tersebut menjadi “cetakan” untuk pembentukan dua untaian DNA baru berdasarkan urutan nukleotida komplementernya. DNA polimerase membentuk untaian DNA baru dengan memperpanjang oligonukleotida (RNA) yang dibentuk oleh enzim primase dan disebut primer.
§  Pemanjangan Untaian DNA. DNA polimerase membentuk untaian DNA baru dengan menambahkan nukleotida dalam hal ini, deoksiribonukleotida ke ujung 3′ hidroksil bebas nukleotida rantai DNA yang sedang tumbuh. Dengan kata lain, rantai DNA baru (DNA “anak”) disintesis dari arah 5′→3′, sedangkan DNA polimerase bergerak pada DNA “induk” dengan arah 3′→5′. Namun demikian, salah satu untaian DNA induk pada garpu replikasi berorientasi 3′→5′, sementara untaian lainnya berorientasi 5′→3′, dan helikase bergerak membuka untaian rangkap DNA dengan arah 5′→3′. Oleh karena itu, replikasi harus berlangsung pada kedua arah berlawanan tersebut
§  Pembentukan Leading strand. Pada replikasi DNA, untaian pengawal (leading strand) ialah untaian DNA disintesis dengan arah 5′→3′ secara berkesinambungan. Pada untaian ini, DNA polimerase mampu membentuk DNA menggunakan ujung 3′-OH bebas dari sebuah primer RNA dan sintesis DNA berlangsung secara berkesinambungan,  searah dengan arah pergerakan garpu replikasi.
§  Pembentukan Lagging strand. Lagging strand ialah untaian DNA yang terletak pada sisi yang berseberangan dengan leading strand pada garpu replikasi. Untaian ini disintesis dalam segmen-segmen yang disebut fragmen Okazaki. Panjang fragmen okazaki mencapai sekitar 2.000 nukleotides panjang dalam sel-sel bakterial dan sekitar  200 panjang nukelotides dalam sel-sel eukaryotic. Pada untaian ini, primase membentuk primer RNA. DNA polimerase dengan demikian dapat menggunakan gugus OH 3′ bebas pada primer RNA tersebut untuk mensintesis DNA dengan arah 5′→3′. Fragmen primer RNA tersebut lalu disingkirkan (misalnya dengan RNase H dan DNA Polimerase I) dan deoksiribonukleotida baru ditambahkan untuk mengisi celah yang tadinya ditempati oleh RNA. DNA ligase lalu menyambungkan fragmen-fragmen Okazaki tersebut sehingga sintesis lagging strand menjadi lengkap.
DNA polymerases tidak mampu ‘mengisi’ ikatan covalent yang hilang. Celah yang tersisa direkat oleh DNA ligase. Enzim ini mengkatalis pembentukan ikatan phosphodiester antara 3’ – OH dari salah satu helaian dari 5’-P dari helaian yang lain.DNA ligase diaktifkan oleh AMP (adenosine monophosphate) sebagai ‘cofactor’ (faktor pengendali). Dalam E.coli, AMP dibawa dari nucleotide NAD+. Dalam sel-sel eukaryotik, AMP ditandai dari ATP. Ligase-ligase tidak dilibatkan dalam pemanjangan rantai; melainkan, mereka berperan pemasang enzim-enzim untuk perekatan ‘celah’ melalui molekul DNA.
§  Modifikasi Post-Replikasi DNA, Setelah DNA direplikasikan, dua helaian tersintesis terbaru dipasangkan ke modifikasi enzimatik. Perubahan-perubahan ini biasanya melibatkan penambahan molekul-molekul tertentu untuk mengkhususkan titik-titik sepanjang helix ganda. Pada cara ini, tags sel, atau label-label, DNA, sehingga ini bisa membedakan material genetiknya sendiri dari berbagai DNA asing yang mungkin bisa masuk ke dalam sel. Modifikasi post-replikasi DNA mungkin juga mempengaruhi cara molekul diikat. DNA merupakan faktor utama modifikasi dengan penambahan kelompok methyl ke beberapa adenine dan residu-residu cytosine. Grup methyl ditambahkan oleh DNA methylasess setelah nucleotides telah digabungkan dengan DNA polymerases.
Penambahan methyl ke cytosine membentuk 5-methylcytosine dan methylasi dari adenine membentuk 6-methyladine. Methyladine lebih umum daripada methylcytosine dalam sel-sel bakterial, di mana dalam sel-sel eukaryotik, grup methyl paling banyak ditambahkan ke cytosine. Methylase muncul hanya pada beberapa rentetan nucleotide khusus. Dalam sel-sel eukaryotik, sebagai contoh, methylasi secara umum muncul pada saat cytosine berdampingan ke guanine di sisi 3’-OH (5’ P-CG-3’OH).Pola methylasi bersifat spesifik untuk spesies yang diberikan, berperan seperti tanda tangan untuk DNA spesies tersebut. Hal ini patut diperhatikan karena grup methy melindungi DNA melawan perlawanan enzim-enzim tertentu disebut ‘restriction endonucleases’ Oleh karena itu DNA asing melalui  sebuah sel dicerna dengan ‘restriction endonucleases’. Dalam sel tertentu, ‘restriction endonucleases’ bisa memotong DNA di titik khusus tertentu di mana DNA methylase menambah sebuah grup methyl.
Pola methylasi melindungi DNA dari cernaan oleh sel yang memiliki endonucleases tapi tidak melawan pembatasan enzim-enzim yang diproduksi sel-sel spesies yang lain. Pembatasan ini menyederhanakan pertukaran DNA antar sel dari spesies yang diproduksi sel-sel spesies yang berbeda. Methylasi DNA pada titik-titik tertentu mungkin akan berakhir pada konversi terdekat dari B-DNA ke bentuk-bentuk Z-DNA. Dalam bentuk B-DNA, grup-grup hydropholic methyl dari alur utama, menghasilkan pengaturan yang tepat. Dengan mengubahnya ke bentuk Z, grup-grup methyl membentuk area hydropholik yang membantu menstabilkan DNA. Konversi lokal ini (dari B-DNA ke Z-DNA) mungkin mempengaruhi fungsi beberapa gen.

Tadi gue ngomong ape ye :D
Oke deh, tapi setidaknya kalian bisa mendapatkan apa yang kalian butuhkan..hehee
~HappyBlogging

2 komentar:

  1. play bandarq dimana anda bisa menjadi bandar hanya di AJOQQ,net
    main dan menangkan sebanyak banyaknya

    BalasHapus
  2. rasakan bermain secara online di AJOQQ
    min dp. 15ribu
    min wd. 15ribu
    coba daftar, main dan menangkan hingga ratusan juta
    jadilah pemenang di AJOQQ

    BalasHapus

Jika ada yang ingin kalian tanya atau tambahkan mengenai tulisan ini, silahkan tinggalkan komentar. InsyaAllah kami siap menjawabnya :)